Computational geometry of linear threshold functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Noisy Linear Threshold Functions

This papers describes and analyzes algorithms for learning linear threshold function (LTFs) in the presence of classiication noise and monotonic noise. When there is classiication noise, each randomly drawn example is mislabeled (i.e., diiers from the target LTF) with the same probability. For monotonic noise, the probability of mis-labeling an example monotonically decreases with the separatio...

متن کامل

Distribution-Independent Evolvability of Linear Threshold Functions

Valiant’s (2007) model of evolvability models the evolutionary process of acquiring useful functionality as a restricted form of learning from random examples. Linear threshold functions and their various subclasses, such as conjunctions and decision lists, play a fundamental role in learning theory and hence their evolvability has been the primary focus of research on Valiant’s framework (2007...

متن کامل

Approximation Resistance and Linear Threshold Functions

In the boolean Max− k−CSP (f) problem we are given a predicate f : {−1, 1}k → {0, 1}, a set of variables, and local constraints of the form f(x1, ..., xk), where each xi is either a variable or negated variable. The goal is to assign values to variables as to maximize the fraction of constraints which evaluate to 1. Many such problems are NP-Hard to solve exactly, and some are even NPHard to ap...

متن کامل

Linear Threshold Functions in the Presence of Classi

I show that linear threshold functions are polynomially learnable in the presence of classii-cation noise, i.e., polynomial in n, 1==, 1==, and 1==, where n is the number of Boolean attributes, and are the usual accuracy and conndence parameters, and indicates the minimum distance of any example from the target hyperplane, which is assumed to be lower than the average distance of the examples f...

متن کامل

Probabilistic Construction of Monotone Formulae for Positive Linear Threshold Functions

We extend Valiant's construction of monotone formulae for the majority function to obtain an eecient probabilistic construction of small monotone formulae for arbitrary positive linear threshold functions. We show that any positive linear threshold function on n boolean variables which has weight complexity q(n) can be computed by a monotone boolean formula of size O(q(n) 3:3 n 2): Our techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Control

سال: 1977

ISSN: 0019-9958

DOI: 10.1016/s0019-9958(77)90272-8